Reverse Osmosis Separation of Organic Liquid Molecules Using Carbon Molecular Sieve Membrane


Separation and purification are very important in production and life. About 40-60% of the energy in the production process is used for separation and purification; the separation of substances with similar physical properties is also very difficult, such as the separation between isomers. Membrane-based separation methods, if the separation efficiency can be improved, can greatly reduce energy consumption. For example, organic solution nanofiltration membranes are used for the purification of high-value products, but cannot effectively separate molecules of similar molecular size due to insufficient molecular specificity. In order to obtain a better separation and purification method, effectively reduce the energy consumption, and improve the separation efficiency, researchers still need to continue research.

Results introduction
On August 19, Ryan P. Lively, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA, reported an asymmetric carbon molecular sieve (CMS) hollow fiber membrane in Nature as a potential organic solvent reverse osmosis technology (OSRO). Material. The organic solvent reverse osmosis technology using carbon molecular sieve not only does not need to change the phase of the organic matter, reduces the energy loss in the separation process, but also effectively separates the organic matter with similar molecular sizes. The authors used the changes in the permeability of para-xylene and ortho-xylene in CMS films to reflect the permeation performance of CMS.
Using carbon molecular sieve membrane, the reverse osmosis separation of organic liquid molecules can be achieved, and the separation can be efficiently completed without changing the phase morphology and reducing energy consumption.

Outlook
The use of the dialysis separation technology under the low temperature and high pressure of the separation membrane can greatly reduce the energy consumption, but the separation efficiency and separation selectivity are still great challenges, and the continuous efforts of the majority of researchers are still needed.

Categories